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Abstract

Microtubules are core components of the cytoskeleton and serve as tracks
for motor protein—based intracellular transport. Microtubule networks are
highly diverse across different cell types and are believed to adapt to cell
type—specific transport demands. Here we review how the spatial organi-
zation of different subsets of microtubules into higher-order networks de-
termines the traffic rules for motor-based transport in different animal cell
types. We describe the interplay between microtubule network organization
and motor-based transport within epithelial cells, oocytes, neurons, cilia, and
the spindle apparatus.
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1. INTRODUCTION

Many cell types have specialized morphologies that enable their specific function. The cytoskele-
ton and its associated motor proteins are key players in shaping cells and establishing spatial orga-
nization within a cell (Barlan & Gelfand 2017, Vale 2003). The spatially regulated polymerization
of microtubules and actin polymers can drive morphological transitions, such as global or local
protrusion of the cellular membrane. Such transitions drive, for instance, cell migration and the
development of specialized extensions, such as cilia, microvilli, axons, and dendrites. In addition,
the structural asymmetry of microtubules and actin enables cytoskeletal motor proteins to take
ATP-dependent steps toward either the plus or the minus end of actin or microtubules. Myosins
can move over actin, while microtubule-based transport is driven by members of the kinesin su-
perfamily or dyneins. Whereas dyneins move toward the microtubule minus end, most kinesins
are plus end directed (Figure 14). Besides moving cargoes over microtubules and actin, several
motor proteins also contribute to the formation of large-scale cytoskeletal assemblies with special-
ized functions, such as contractile actin bundles (sarcomeres and stress fibers) and the microtubule-
based spindle apparatus used to segregate chromosomes during cell division (Sweeney & Holzbaur
2018). Thus, understanding cellular organization requires understanding the dynamic interplay
between motor protein activity and cytoskeletal organization.

Opver the past decades, the use of purified components to reconstitute cytoskeletal dynamics
and motor-based transport has often been the method of choice to achieve mechanistic insights
into these processes. Such well-controlled experiments allow for careful dissection of the basic
properties of different proteins and have revealed how cytoskeletal dynamics and motor-based
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Figure 1

Microtubule (MT) organization and motor-based transport. (#) Diagram illustrating microtubule structure and motor protein
directionality. (#) Example images of microtubules in a COS7 cell and a hippocampal neuron. (¢) Difterent types of microtubule
organization (see Section 3.1 for discussion) and the expected directionality of dynein (green arrows) and plus end-directed kinesin (blue
arrows). The top right diagram indicates the directionality of kinesins with a preference for different microtubule subsets (tes/ and
orange arrows). (d) Simulations showing the effect of microtubule orientations on cargo redistribution. Figure adapted with permission
from Tas et al. 2017).

www.annualreviews.org o Cellular Logistics 31



Annu. Rev. Cell Dev. Biol. 2019.35:29-54. Downloaded from www.annualreviews.org
Access provided by Universidade Federal do Para on 01/10/20. For personal use only.

32

transport can be modulated by regulatory proteins, chemical compounds, specific cytoskeletal ge-
ometries, and other factors. In addition, such assays are increasingly providing detailed structural
insights into the mechanisms of motility and microtubule growth. Nonetheless, complementary
approaches are needed to achieve an understanding of cellular transport systems as a whole. For
example, certain phenomena observed in simplified systems might not operate within cells, while
many aspects of cellular transport have so far evaded reconstitution because the relevant molec-
ular players have not yet been identified. Moreover, exploring how cellular context controls cel-
lular transport is perhaps best studied within cells. Thus, understanding the interplay between
cytoskeletal organization and intracellular transport also requires careful analysis of transport in-
side cells in combination with a detailed mapping of the cellular cytoskeleton.

In recent years, new types of cell-based experiments have enabled detailed exploration of cellu-
lar transport systems and their logistics. Advanced microscopy approaches have provided new in-
sights into cytoskeletal organization, while assays that explore the activity of specific motors inside
cells have revealed that different motors can move toward specific destinations, often by moving
on distinct microtubule subsets. This supports the tubulin code hypothesis, which proposes that
the genetic and chemical diversity of tubulin regulates microtubule properties and functioning
(Janke 2014, Verhey & Gaertig 2007, Yu et al. 2015). In this review, we mostly concentrate on
the microtubule cytoskeleton of animal cells and describe how different cells use specialized mi-
crotubule networks to ensure proper intracellular logistics. After highlighting the basic principles
underlying microtubule organization and motor-based transport, we describe how the diversifi-
cation of microtubule properties, such as microtubule orientation and surface modifications, can
be used to guide different motors to distinct locations in a variety of cellular systems.

2. BASICS OF MICROTUBULES AND MICROTUBULE-BASED
TRANSPORT

2.1. Microtubules

Microtubules assemble from heterodimers of «- and 3-tubulin, which interact in a head-to-tail
fashion to form linear, structurally polarized protofilaments and also associate laterally, resulting
in a hollow tube with an outer diameter of ~25 nm (Figure 14) (Akhmanova & Steinmetz 2015,
Brouhard & Rice 2018, Manka & Moores 2018).

2.1.1. Microtubule dynamics and diversity. Microtubules switch between phases of growth
and disassembly in a process termed dynamic instability (Mitchison & Kirschner 1984). These
dynamics can be observed in the absence of any regulatory proteins and thus appear coupled to
the intrinsic properties of tubulin dimers within the lattice. Free tubulin binds GTP, which (for
[3-tubulin) is hydrolyzed to GDP shortly after incorporation into the microtubule lattice. Because
GDP tubulin lattices are unstable, persistent growth is believed to depend on the presence of a
stabilizing cap of GTP tubulin at the microtubule plus end. In this GTP-cap model, loss of the cap
will result in rapid disassembly of the microtubule, termed a catastrophe, which can be followed
by a transition to a growing state, termed rescue. While cryo-EM approaches have resulted in
rapid progress in dissecting the structural variations in different tubulin states (Manka & Moores
2018, Nogales & Zhang 2016, Zhang et al. 2015), how the interplay and transitions between these
states lead to dynamic instability remains unclear.

The human genome encodes 17 tubulin genes (Fojo 2009, Roll-Mecak 2019). The structured
core within them is highly conserved, and the majority of variations lie within the unstructured
C terminus. The C-terminal amino acid tail of tubulin protrudes out from the microtubule sur-
face and is subjected to various posttranslational modifications (PTMs), including detyrosination,
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acetylation, glutamylation, glycylation, and phosphorylation (Janke 2014, Song & Brady 2015,
Verhey & Gaertig 2007, Wloga et al. 2017, Yu et al. 2015). While acetylation occurs on the lumi-
nal side of the microtubule, most other P'TMs take place on the outer surface. Different PTMs are
enriched in certain tissue or cellular compartments (Figure 15). For example, tubulin glutamyla-
tion is abundant in neurons, flagellar axonemes, and centriolar microtubules, while detyrosinated
microtubules are enriched at the leading side of a migrating cell and in the mitotic spindle. Sim-
ilarly, certain -tubulin isoforms are enriched in axonemes, neurons, and platelets (Roll-Mecak
2019).

Many microtubule-associated proteins (MAPs) interact with microtubules and alter their prop-
erties (Akhmanova & Steinmetz 2015, Goodson & Jonasson 2018, Kapitein & Hoogenraad 2015).
Some interacting proteins can directly modulate microtubule numbers, for instance, by regulat-
ing nucleation [e.g., y-tubulin (Kollman et al. 2011), augmin/human augmin complex HAUS
(Goshima et al. 2008)] or by severing preexisting microtubules [e.g., katanin, spastin, fidgetin
(McNally & Roll-Mecak 2018)]. Other MAPs associate with microtubule ends and regulate their
dynamics, such as plus end-tracking proteins and minus end-targeting proteins (Akhmanova &
Steinmetz 2015). MAPs of yet another class interact with the microtubule lattice to stabilize or
crosslink microtubules. Finally, tubulin-modifying enzymes are responsible for the various PTMs
mentioned above or the reversal thereof (Janke 2014, Yu et al. 2015). Importantly, these different
proteins can influence each other’s actions, which can lead to the generation of distinct micro-
tubule subtypes. For example, because certain modifications appear slowly after microtubule poly-
merization and will not accumulate before depolymerization occurs, only microtubules that are
stabilized by certain MAPs will accumulate more of these modifications (Kirschner & Mitchison
1986). In turn, these modifications can impede the action of microtubule-destabilizing proteins,
further increasing the lifetime of these microtubules. Certain levels of microtubule polyglutamy-
lation inhibit the microtubule-severing action of spastin (Valenstein & Roll-Mecak 2016), while
detyrosination of tubulin impedes the activity of the microtubule depolymerase MCAK (Peris
et al. 2009). The activity of severing enzymes is regulated by different MAPs in a similar manner
(Qiang et al. 2006).

2.1.2. Microtubule organization. How do all these processes contribute to the formation of
specialized microtubule arrays? First, by controlling the location and orientation of microtubule
nucleation, ordered networks can be built (Sanchez & Feldman 2017, Wu & Akhmanova 2017).
In nondifferentiated, dividing animal cells, most new microtubules emerge at the centrosome.
Because the centrosome is typically located close to the nucleus, the result is a radial array of mi-
crotubules whose plus ends point toward the cell membrane (Figure 15; see Figure 2 for methods
of polarity detection). In addition to microtubules nucleated at the centrosome, the Golgi appara-
tus often nucleates a considerable number of microtubules (Efimov et al. 2007). One function of
these microtubules is bringing Golgi stacks together into the Golgi ribbon after mitosis. In addi-
tion, Golgi-derived microtubules are believed to contribute to cellular polarization because they
increase microtubule density in the part of the cell where the Golgi apparatus resides (Miller et al.
2009). Importantly, given the perinuclear location of the Golgi apparatus, the overall orientation
of microtubules in the cells will still be radial, with the plus ends pointing outward. In contrast,
the y-tubulin ring complex (y-TuRC) relocalizes to the apical surface of many columnar epithe-
lial cells, resulting in a polarized microtubule network in which the plus ends point toward the
basolateral surface while most minus ends are located apically (Sanchez & Feldman 2017, Toya &
Takeichi 2016). Depending on the exact cell type, such cells could also have centrosome-derived
microtubules. Thus, in different cell types, distinct organelles or structures can serve as sites for
nucleation. In addition, microtubules themselves can aid in nucleation of microtubules with the
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Tools to map the orientation of microtubules. (#) Hook decoration. (#) Microtubule plus end tracking. () Laser severing and plus end
tracking. (d) Tracking motor protein directionality by motor-PAINT. Panel d adapted with permission from Tas et al. (2017).

same absolute orientation by recruiting and orienting the y-TuRC through the augmin/HAUS
complex (Goshima et al. 2008, Petry et al. 2013). This mechanism facilitates the formation of
large radial arrays in which microtubule density does not decrease when the distance from the fo-
cal point increases. This mechanism has also been proposed to contribute to the formation of the
parallel microtubule network in axons, because knockdown of augmin subunits results in the ap-
pearance of oppositely oriented microtubules (Cunha-Ferreira et al. 2018, Sanchez-Huertas et al.
2016).

Controlling microtubule growth properties is another mechanism of shaping networks. While
plus ends typically alternate between growing and shrinking, most microtubule minus ends are
relatively stable. This stability results from complexes that anchor these ends to specific sites
(Sanchez & Feldman 2017, Wu & Akhmanova 2017) or from the minus end-binding proteins
of the CAMSAP/Nezha family; these proteins can rapidly stabilize freshly generated minus ends
(Akhmanova & Hoogenraad 2015, Meng et al. 2008). Capture of microtubule plus ends, for exam-
ple, at kinetochores (Foley & Kapoor 2013) or the cortex (Lansbergen et al. 2006), can also prevent
depolymerization and result in long-lived microtubules. The lattice of such microtubules could
subsequently accumulate different modifications and MAPs to further stabilize and differentiate
these microtubules relative to the dynamic microtubules (Kirschner & Mitchison 1986).

Finally, microtubules can be organized by displacing them. This could occur by coupling them
to moving structures, such as an actin network that displays retrograde flow. In addition, motor
proteins can directly move microtubules in multiple ways (Kapitein & Hoogenraad 2015). Sev-
eral motors can crosslink microtubules and move them relative to each other (Fink et al. 2009,
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Jolly et al. 2010, Kapitein et al. 2005, Oladipo et al. 2007). In the spindle, dynein and Kinesin-14
focus minus ends into spindle poles, while Kinesin-5 motors are believed to push apart antiparal-
lel microtubules (Prosser & Pelletier 2017). In Drosophila neurons, Kinesin-1 and Kinesin-2 con-
tribute to microtubule transport and orientation (Mattie et al. 2010, Winding et al. 2016). For
example, Kinesin-2 guides polymerizing plus ends along existing microtubules to ensure proper
incorporation of new microtubules into parallel arrays (Mattie et al. 2010). Thus, by controlling
the nucleation, dynamics, stability, and displacement of different microtubules, complex networks
with distinct microtubule subsets can be established.

2.2. Microtubule-Based Transport

Motor proteins of the kinesin superfamily and dyneins drive microtubule-based intracellular
transport. Most kinesins move toward the microtubule plus end, whereas dyneins move toward
the minus end. These motors use the energy derived from ATP hydrolysis to transport car-
goes (e.g., Kinesin-1, Kinesin-2, Kinesin-3), to organize microtubules (e.g., Kinesin-1, Kinesin-5,
Kinesin-6, Kinesin-14), and to alter microtubule dynamics (e.g., Kinesin-4, Kinesin-8, Kinesin-13)
(Hirokawa & Noda 2008, Sweeney & Holzbaur 2018).

2.2.1. Kinesin and dynein. The human genome encodes 45 different kinesins that can be cat-
egorized into 14 families on the basis of phylogenetic analysis of their motor heads (Lawrence
et al. 2004). Most kinesin motors have a head region (including the motor domain), a stalk, and
a tail region. The motor domains undergo ATP-dependent conformational changes that mediate
force generation, and the stalk domain often determines the oligomeric state of the motor, while
the tail mediates cargo interaction and can serve autoregulatory roles. Robust processive motion
(i.e., taking multiple steps per microtubule encounter) depends on the presence of (at least) two
motor domains whose chemomechanical cycles are kept out of phase to prevent detachment from
the microtubule. Indeed, truncated dimeric Kinesin-1 constructs can move processively in vitro
and in cells. In contrast, full-length Kinesin-1 is largely inactive in the absence of cargo because of
an autoinhibitory interaction between the tail domain and a region in the motor domains (Kaan
etal. 2011). Relief from this autoinhibition depends on the interaction with specific adaptor pro-
teins that link the motor to different cargoes. Other motors, such as the Kinesin-3 KIF1A, are
thought to be only weakly dimeric and hence weakly processive, unless cargo adaptors induce
stable dimerization and thereby trigger efficient transport (Sweeney & Holzbaur 2018).

Dynein motors move toward the minus end of microtubules. There are two main members
of dynein superfamily: axonemal (also known as ciliary or flagellar) dyneins and cytoplasmic
dyneins. Axonemal dyneins drive the motility of axonemes (microtubule-based structures found
in cilia and sperm tails) by inducing the relative sliding of adjacent microtubule doublets, while
cargo transport along these structures [i.e., intraflagellar transport (IFT)] is driven by kinesins
and cytoplasmic dynein 2. In contrast, cytoplasmic dynein 1 is the only dynein isoform that
functions in the cytoplasm of eukaryotic cells, where it contributes to formation of the spindle
apparatus and is believed to drive most minus end-directed cargo transport. These motors are
large multiprotein complexes, and only recently have structural work and in vitro reconstitutions
begun to reveal the spatial organization, mechanism of motility, and modes of regulation of this
motor (for an excellent recent review on dynein structure and function, see Reck-Peterson et al.
2018). In recent years, the role of adaptor proteins in activating dynein motility has emerged as
a key concept in understanding dynein’s activity and regulation. This role was initially proposed
for the dynein adaptor BICD (Splinter et al. 2012), and subsequent in vitro reconstitutions have
revealed that multiple adaptors can independently promote the interaction between dynein and
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the multisubunit cofactor dynactin and hence trigger processive motility (McKenney et al. 2014,
Reck-Peterson et al. 2018, Schlager et al. 2014).

2.2.2. Microtubule diversity and motor selectivity. Given the existence of different subsets
of microtubules, the question arises whether different motors preferentially interact with different
microtubules. Indeed, several members of the kinesin superfamily prefer microtubule subsets that
carry specific chemical modifications or associated proteins. Initial work found that antibodies
against detyrosinated microtubules were more effective in blocking Kinesin-1 binding than were
antibodies against tyrosinated tubulin (Liao & Gundersen 1998). Later, single-molecule-imaging
experiments in cells combined with immunocytochemistry to identify microtubule subsets re-
vealed that Kinesin-1 prefers stable microtubules enriched in acetylation and detyrosination (Cai
et al. 2009, Dunn et al. 2008). More recent work has used rigor mutants of different kinesins,
i.e., constructs with a mutated ATP pocket that traps them in the strong microtubule-bound state
(Farfas et al. 2015, Guardia et al. 2016, Tas et al. 2017). Again, this approach revealed a striking se-
lectivity of Kinesin-1 for highly modified microtubules, while Kinesin-3 prefers the more dynamic
tyrosinated microtubules.

Nonetheless, it is not clear to what extent preferential motor binding directly results from
PTMs. Various in vitro assays in which kinesins were tested on microtubules carrying various
modifications revealed interesting differential effects of certain modifications on different motors
(Kaul et al. 2014, Sirajuddin et al. 2014). However, some of the effects seem insufficient to explain
the strong preferences of Kinesin-1 for a specific microtubule subset observed in cells (i.e., an up-
to-twofold increase or decrease in speed and processivity in most cases). An alternative hypothesis
may be that motors are influenced by other features that are downstream, or perhaps even up-
stream, of these modifications. For example, tubulin modifications may modulate the binding of
different MAPs that in turn influence motor activity. Alternatively, certain MAPs may modulate
motor proteins and promote the accumulation of specific PTMs, for example, by increasing mi-
crotubule lifetime. In the latter case, the accumulation of motors would be correlated with certain
modifications but would not functionally depend on them.

The effects of MAPs on motor activity are currently gaining renewed attention. Several early
studies reported strong opposing effects of both tau and MAP2 on Kinesin-1 binding and/or
motility, whereas dynein was much less affected (Chaudhary et al. 2018; Dixit etal. 2008; McVicker
etal. 2011; Vershinin etal. 2007,2008; Xu et al. 2013). More recently, cellular experiments showed
that MAP2 has stronger inhibitory effects on Kinesin-1 than on Kinesin-3 (Gumy et al. 2017). In
addition, MAP7 was identified as an important activator of Kinesin-1 activity, while Doublecortin
and DCLKI1 were shown to promote Kinesin-3 binding (Lipka et al. 2016, Liu et al. 2012). In
vitro reconstitution revealed that MAP7 promotes binding of Kinesin-1 but opposes binding of
the Kinesin-3 KIF1A (Hooikaas et al. 2019, Monroy et al. 2018). Likewise, other in vitro work
revealed that Septin-9 promotes microtubule binding of Kinesin-3 while opposing binding of
Kinesin-1 (Karasmanis et al. 2018). The positive effects of Septin-9 appear dependent on the
lysine-rich domain in the L12 loop of KIF1A because, upon grafting this loop onto Kinesin-
1, Septin-9 promotes microtubule interactions of Kinesin-1 in in vitro assays. The mechanisms
underlying these effects are unclear but will hopefully be revealed using structural methods that
can map the exact binding interfaces of all these proteins on the microtubules (Al-Bassam et al.
2007, Kellogg et al. 2018, Shigematsu et al. 2018).

In addition to a role for PTMs and MAPs, structural changes in the microtubule lattice may
contribute to motor selectivity. Several articles have reported that Kinesin-1 can alter the structure
of microtubules in subtle ways, resulting in a slightly elongated lattice (Peet et al. 2018, Shima
etal. 2018). Because global changes are observed with substoichiometric decoration of kinesin, its
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binding appears to trigger structural changes that can propagate through the microtubule lattice
over length scales of multiple tubulin dimers. These changes may enhance the subsequent binding
of Kinesin-1 and thereby cause cooperative binding (Muto et al. 2005, Shima et al. 2018). In
addition, these changes may in some cases persist for some time upon motor detachment. Similar
suggestions of long-range structural changes that arise upon protein binding through mechanical
coupling in the lattice have been made for the binding of other MAPs (Brouhard & Rice 2018).

Finally, one might assume that dynein should not be too selective for a specific subset, given
that it is implicated in most minus end—directed transport processes. Nonetheless, in vitro ex-
periments have shown that initiation of dynein runs is promoted by tyrosinated tubulin through
interaction with the Cap-Gly domain of dynactin, which may help in biasing transport initiation to
the dynamic plus end of microtubules (McKenney et al. 2016, Nirschl et al. 2016). After transport
initiation, tyrosination is no longer required to sustain motility.

2.2.3. Cargoes with multiple motors. It is well known that multiple cargoes recruit more
than one type of motor (Barlan & Gelfand 2017, Bonifacino & Neefjes 2017, Guardia et al. 2016,
Hancock 2014, Prevo et al. 2017). Moreover, some adaptors that can activate dynein also interact
with kinesins (Redwine et al. 2017, Schlager et al. 2010, Splinter et al. 2010). How the activity of
different motors on the same cargo is coordinated remains an open question, but several scenarios
can be envisioned, and all such scenarios are likely at play in different situations. Because many
excellent reviews have covered different aspects of this problem in the past years (Barlan & Gelfand
2017, Bonifacino & Neefjes 2017, Guardia et al. 2016, Hancock 2014, Prevo et al. 2017), we do
not focus on it here and note only that cells have various ways to control in space and time which
motors are dominant on specific cargoes. However, even if one type of motor is active on a cargo,
different copies can still interact with oppositely oriented microtubules at the same time. This
situation can result in directional conflicts and frequent reversals of motility (Derivery et al. 2015,
Kapitein et al. 2010a). How overall microtubule organization controls motor-based transport is
the topic of the remainder of this review.

3. FORM FOLLOWS FUNCTION: MICROTUBULE ORGANIZATION
AND INTRACELLULAR TRANSPORT

3.1. General Considerations

There are many different ways in which microtubule organization can control motor-based
transport to establish well-defined transport pathways for different cargoes. Before turning to
specific cellular systems, we first discuss some of the general principles. In cells with a radial
microtubule array focused near the cell center, minus end-directed dynein is required for ret-
rograde transport toward the cell center, whereas plus end-directed kinesins drive outward, an-
terograde transport (Figure 1c). If such an array is symmetric, the radial distribution established
by plus end—directed transport will be isotropic, meaning that there will be no preference for
one side of the cell. Nonetheless, during interphase the centrosome is often off-centered, result-
ing in an asymmetric microtubule distribution (Mimori-Kiyosue 2011). This effect is further en-
hanced by the presence of the nucleus, which acts as a barrier for microtubule growth (Luxton &
Gundersen 2011). In addition, the Golgi apparatus is located close to the centrosome, and there-
fore Golgi-derived microtubules further increase microtubule density on one side of the cell while
preserving the overall plus end out orientation of the network (Efimov et al. 2007). Such asym-
metric microtubule density may lead to increased cargo flux on the high-density side of the cell
(Miller et al. 2009). This asymmetric cargo flux can be caused by the increased probability of
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vesicles leaving the Golgi apparatus to interact with Golgi-derived microtubules. In addition, if
cargoes switch between non-microtubule-bound, diffusive states and episodes of directional move-
ment on microtubules, increased capture in high-density regions will also result in an asymmetric
distribution.

Other mechanisms may further contribute to asymmetric (or polarized) transport on radial
arrays. If microtubules are selectively stabilized or modified on one side of the array, for example,
through plus end stabilization at cortical sites, these microtubules may form a subset of tracks for
motors that prefer stable microtubules. This organization will strongly bias the transport driven
by these motors to one side of the cell (Figure 1¢). Finally, different types of pathways may locally
regulate motor activity and thereby promote motility on one side of a radial array. In this case,
asymmetric targeting is not necessarily encoded by the microtubule network. Nonetheless, if such
regulatory factors themselves depend on motor activity for their distribution, feedback may am-
plify a small initial bias and result in asymmetric transport. Such feedback may, for example, occur
if motor binding promotes the subsequent binding of more motors through subtle alterations to
the microtubule lattice (Muto et al. 2005, Shima et al. 2018).

On arrays where most microtubules are bundled or otherwise aligned, different situations can
be envisioned (Figure 1c¢). First, all the microtubules may have the same absolute orientations,
resulting in uniform polarity, or parallel alignment. In this case, it is trivial how motors with dif-
ferent directionalities contribute to transport to either side of the array. In contrast, microtubule
polarity may also be mixed. In a mixed array, microtubules may be randomly oriented, irrespec-
tive of the polarity of neighboring microtubules. Alternatively, if such an array is formed by MAPs
that selectively crosslink two microtubules with opposite (i.e., antiparallel) orientations, it will be
ordered and display alternating polarity between neighboring microtubules (Gaillard et al. 2008).
In addition, mixed microtubule arrays may display local polarity alignment, featuring distinct sub-
arrays with (mostly) uniform polarity that are oriented antiparallel to neighboring subarrays (Tas
etal. 2017).

Mixed microtubule networks are found in several of the systems discussed below, for example,
Drosophila oocytes, the spindle apparatus, and the dendrites of mammalian neurons. To understand
how mixed microtubule networks modulate motor-driven transport, several research groups have
used mathematical modeling or numerical simulations (Ciocanel et al. 2018, Derivery et al. 2015,
Kapitein et al. 2010a, Khuc Trong et al. 2015). These approaches have revealed that even a small
asymmetry in microtubule orientations is sufficient to create a strong bias in directional transport

(Figure 1c,d).

3.2. Transport in Cycling Cells: Role of Microtubule Density
and Microtubule Subsets

Cells with a radial microtubule array can also (transiently) require polarized transport. For exam-
ple, during cell migration, specific cargoes are moved to the leading edge of cells to, among other
actions, regulate focal adhesion dynamics or to degrade the extracellular matrix (Schmoranzer
etal. 2003, Stehbens & Wittmann 2012). In addition, cytotoxic T lymphocytes form immunolog-
ical synapses with target cells, where the former cells secrete lytic granules that concentrate at this
site (Stinchcombe et al. 2006). One way to achieve such polarized transport is to increase local
microtubule density by positioning the centrosome and Golgi apparatus in front of the nucleus.
Indeed, active orientation of the nucleus-centrosome-Golgi axis in the direction of migration has
been observed in various cell types and often results in biased transport of secretory vesicles to-
ward the leading edge (Burute et al. 2017, Kaverina & Straube 2011, Luxton & Gundersen 2011,
Schmoranzer et al. 2003). Interestingly, cytotoxic T lymphocytes use an alternative mechanism to
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enrich cargoes at the immunological synapse. In this case, the centrosome relocates to the plasma
membrane upon contacting a target cell, which mediates dynein-driven clustering and subsequent
secretion of lytic granules (Stinchcombe et al. 2006).

In several systems, biased transport to the leading edge is further promoted by the stabiliza-
tion and preferential use of microtubules that are anchored near focal adhesions (Bouchet et al.
2016, Gundersen & Bulinski 1988, Kaverina & Straube 2011, Lansbergen et al. 2006, Stehbens
et al. 2014). Such use of specific microtubule subsets for transport also contributes to the proper
organization of organelles in many interphase cells. For example, Kinesin-1 preferentially moves
lysosomes over perinuclear acetylated microtubules, whereas Kinesin-3 transports lysosomes over
more peripheral and tyrosinated microtubules (Guardia et al. 2016). The subcellular localization
of lysosomes not only determines their maturation and lytic capacity (Guardia et al. 2016) but also
contributes to metabolic signaling (Korolchuk et al. 2011, Pu et al. 2016). In addition, the fusion
between autophagosomes and lysosomes occurs predominantly on detyrosinated microtubules
(Mohan et al. 2018). Similarly, a subset of acetylated microtubules are also used for endoplas-
mic reticulum (ER) sliding and are preferred sites of contact between mitochondria and the ER
(Friedman et al. 2010).

3.3. Columnar Epithelia: Linear Arrays Facilitate Transport Along
the Apicobasal Axis

Multicellular organisms use epithelial cells to demarcate between the inside and the outside
(Blasky et al. 2015). These cells have a highly polarized organization with distinct architecture
toward the outside (apical side) and inside (basolateral side). In a fully developed epithelium, or-
ganelles and other cargoes are positioned at or are transported to specific subcellular sites along
the apico-basolateral axis. To facilitate polarized transport, columnar epithelial cells establish a
polarized microtubule network in which most plus ends are pointing toward the basolateral sur-
face, while most minus ends are located apically (Figure 34). Noncentrosomal nucleation and
CAMSAP3-dependent minus end stabilization are required for this organization (Noordstra et al.
2016, Toya & Takeichi 2016, Toya et al. 2016). Depending on the exact cell type, such cells can
also have centrosome-derived microtubules (Sanchez & Feldman 2017, Toya & Takeichi 2016).
Polarized apical-to-basal organization was first observed in teleost retinal pigment epithelial cells
(Troutt & Burnside 1988), Drosophila wing epidermal cells (Mogensen et al. 1989), and cultured
canine kidney (MDCK) cells (Bacallao et al. 1989), followed by similar observations in many other
epithelial cells (Sanchez & Feldman 2017, Toya & Takeichi 2016). To assess microtubule polarity,
the hook decoration method was used (Heidemann & McIntosh 1980). This method relies on the
ability of exogenous tubulin to form lateral curved sheets along the walls of existing microtubules
in certain conditions. In cross sections imaged with electron microscopy, these sheets appear as
clockwise or anticlockwise hooks, depending on their orientation (Figure 24).

Polarized apical-to-basal microtubule organization is believed to facilitate polarized transport
between the apical and basal surfaces, with a clear division of labor between opposite polarity mo-
tors. Indeed, loss of microtubules disrupted transport and resulted in missorting of certain apical
and basolateral markers in MDCK cells (Gilbert et al. 1991). Nonetheless, most markers were still
enriched on the proper side of the cell, indicating that polarity is largely preserved and that micro-
tubules have a facilitating, but nonessential, role in polarity maintenance in these cells. Likewise,
only in compromised conditions do Caenorhabditis elegans epidermal cells require microtubules for
the proper distribution of junctional components (Quintin et al. 2016). The strongest indication
that the specific apical-to-basal organization of microtubules is important for polarized targeting
of cargoes comes from studies demonstrating a role for minus end—directed dynein in the apical
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accumulation of various cargoes. For example, the apical localization of mRINA in the follicle cell
epithelium of Drosophila depends on dynein (Horne-Badovinac & Bilder 2008). Likewise, dynein
knockdown in Drosophila epithelial cells disrupted the apical accumulation of Rab11-positive vesi-
cles required to transport Cadherin 99C and to ensure proper microvilli formation (Khanal et al.
2016).

Disruption of the polarized microtubule organization without losing microtubule mass
was recently achieved using depletion or mislocalization of the minus end-stabilizing protein
CAMSAP3/Patronin (Khanal et al. 2016, Noordstra et al. 2016, Toya et al. 2016). The results
were mispositioning of the Golgi apparatus and the nucleus (Toya et al. 2016), misplaced RAB11-
positive endosomes (Noordstra et al. 2016), and polarity defects (Noordstra et al. 2016). While
these findings demonstrate a clear function of the polarized, noncentrosomal microtubule net-
work, these effects were not lethal to animals, since most CAMSAP3 mutant mice survived (Toya
et al. 2016). The stronger defects observed in cultured Caco2 cells compared to intestinal ente-
rocytes most likely resulted from the residual centrosomal array that remained upon CAMSAP3
knockdown in these cells and that promoted dynein-dependent mislocalization of RAB11-positive
vesicles (Noordstra et al. 2016).

Microtubule minus ends are also anchored at the zonula adherens, the cadherin-based junction
between epithelial cells. This organization promotes the transport driven by dynein and the minus
end-directed kinesin KIFC3 to maintain cell junction integrity (Meng et al. 2008). In addition,
microtubule organization at cell junctions also contributes to planar cell polarity (PCP).

3.4. Planar Cell Polarity: Biased Transport on the Apical Microtubule Network

Many animal tissues display PCP, whereby cells establish uniform polarization within the plane
of a cell sheet. This organization is important to properly establish different types of tissues, for
example, during the formation of the lungs and kidney. For excellent recent reviews, see Aw &
Devenport (2017), Butler & Wallingford (2017), Goodrich & Strutt (2011), and Henderson et al.
(2018).

PCP is mediated by the segregation of different key PCP proteins to different sides of the
cell, where these proteins coordinate both polarization within the cell and PCP between cells by
forming junctional signaling complexes. The Drosophila wing has emerged as an important model
system to study PCP. Here, live-cell imaging revealed that different PCP proteins, such as Frizzled
and Dishevelled, preferentially move toward distal cell boundaries (Matis et al. 2014, Shimada
et al. 2006) over apical microtubules that align parallel to the tissue surface in the direction of the
proximal-distal (P-D) axis. Consistently, quantifying the number of microtubule plus ends moving
along the P-D axis revealed that a slightly higher percentage of plus ends (54%) are oriented
distally (Figures 2b and 34) (Harumoto et al. 2010, Olofsson et al. 2014, Shimada et al. 2006).

The small bias in microtubule orientations observed by tracking dynamic plus ends may be suf-
ficient to drive polarized transport through a biased random walk. Nonetheless, several cargoes
display remarkably long unidirectional runs from proximal-to-basal junctions (Matis et al. 2014),
suggesting a much more ordered microtubule network. Indeed, recent work has proposed that
microtubules form supracellular cables in the Drosophila wing; such cables are connected at adher-
ent junctions and may serve mechanical roles in addition to facilitating polarized transport (Singh
et al. 2018). These microtubules may form a subset of stable microtubules that are not visible
when microtubule end-binding proteins are imaged. This may also explain the robust PCP ob-
served in distal wing cells, where microtubule growth does not have a directional bias (Harumoto
etal. 2010).
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3.5. mRNA Positioning in Drosophila Oocytes: Biased Random Walks
on Disorganized Microtubules

In female fruit flies, bicoid and oskar mRINAs are positioned to the anterior end and the posterior
end of the developing egg cell, respectively. These mRINAs instruct formation of the head and the
abdomen once the egg becomes fertilized (St. Johnston 2005). In these large cells, the presence
of Par-1 at the posterior cortex opposes the positioning of Shot/Patronin-dependent noncentro-
somal nucleation sites, which therefore accumulate along the anterior/lateral cortex (Nashchekin
etal. 2016, Parton etal. 2011). The result s a relatively disorganized microtubule network without
a clear overall polarity. Therefore, it has long remained unclear how robust positioning of bicoid
and oskar to opposite sides of the cell is achieved (Cha et al. 2001). Live-cell imaging of micro-
tubule growth revealed that oskar takes Kinesin-1-driven runs and displays the dynamics of a bi-
ased random walk, with approximately 56% of the runs going toward the posterior pole (Zimyanin
et al. 2008). This finding is consistent with the subsequent analysis of microtubule orientations
using fluorescent end-binding proteins; the latter analysis also revealed a bias in the microtubule
network (Parton et al. 2011). In the anterior region, 55% of microtubules grew toward the poste-
rior pole, and this percentage increased to almost 70% in the posterior region. Thus, while these
cells lack a polarized microtubule array that runs from one pole to the other, preventing nucle-
ation on the posterior pole generates sufficient asymmetry to ensure the proper accumulation of
kinesin-driven cargoes at this pole (Figure 34). Indeed, numerical simulations have confirmed that
asymmetric cortical nucleation is sufficient to polarize the microtubule network and to define the
anteroposterior axis (Khuc Trong et al. 2015).

At the anterior side of the oocyte, microtubules are more disorganized. The small asymmetry
in orientations is insufficient for robust dynein-dependent delivery of bicoid in stage 9 oocytes,
which move without bias in this region. Therefore, proper positioning also requires the cortical
anchoring of bicoid at this side of the cell. Thus, in this part of the cell, dynein-driven transport
can best be described as an active random walk that ensures that mRINAs are mobile enough
to occasionally reach the anterior cortex and get anchored. Why thermal diffusion followed by
capture would not be sufficient in this system is not entirely clear, but an active random walk
may result in better diffusive behavior in this system, which also features cytoplasmic streaming
(Quinlan 2016).

3.6. Neuronal Transport: Axon-Dendrite Selectivity and Transport
on Mixed Polarity Arrays

The ability of neurons to receive, process, and transmit information depends on their polarized
organization into axons and dendrites (Bentley & Banker 2016). Axons propagate signals from the
cell body to other target cells, whereas dendrites receive signals from axons at specialized junctions
termed synapses, where the axonal, presynaptic release of neurotransmitters triggers the activation
of postsynaptic receptors. To build such a highly polarized cell, many building blocks need to
be differentially transported to either axons or dendrites. Failure to properly distribute cellular
components contributes to the pathology of different diseases. Various mechanisms contribute
to this selective targeting, but we focus here on how microtubule organization controls neuronal
transport (for more general reviews, see Bentley & Banker 2016, Gumy & Hoogenraad 2018,
Nirschl et al. 2017).

In lower organisms, such as Drosophila and C. elegans, microtubules in axons and dendrites
are of uniform polarity but are oriented oppositely (Maniar et al. 2012, Rolls 2011, Stone et al.
2008). These features ensure that plus end—directed kinesins drive anterograde transport in the
axons, whereas dynein is required for transport into dendrites over the minus end out-oriented
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network (Harterink et al. 2016, Rolls 2011). A recent study exploited the low microtubule density
in C. elegans axons to directly measure microtubule numbers and length by using clearly detectable
growth events for single-microtubule calibration and renormalization of microtubule intensities
along the length of the axon (Yogev et al. 2016). This study revealed that axonal cargoes often stall
at microtubule ends and that microtubule length limits cargo run length.

Remarkably, dendrites in mammalian neurons have a mixed polarity network, with both ori-
entations being roughly equally abundant, while axons have a uniform plus end out-oriented net-
work. This organization was first revealed using the hook decoration technique (Baas & Lin 2011,
Baas et al. 1988, Burton 1988, Burton & Paige 1981, Heidemann et al. 1981) and was later con-
firmed by imaging proteins that decorate growing microtubule plus ends, both in cultured neurons
(Figure 2a—c) (Stepanova et al. 2003, Yau et al. 2016) and in vivo (Kleele et al. 2014, Yau et al. 2016).
This nonuniform organization in dendrites raises intriguing questions. How do motor proteins
navigate a network with mixed orientations? Can certain plus end-directed motors selectively
move into axons, given the presence of plus end out-oriented microtubules in dendrites?

To answer these questions, several approaches have been used to test how different motors
move in different neuronal compartments. First, expression of constitutively active and fluores-
cently tagged motors revealed that several kinesins accumulate only in axon tips, while other ki-
nesins accumulate in the tips of both axons and dendrites (Huang & Banker 2012, Jacobson et al.
2006, Nakata & Hirokawa 2003, Reed et al. 2006). In addition, multiple well-controlled intracel-
lular transport assays have been developed to directly examine how different motor proteins navi-
gate the neuronal cytoskeleton to facilitate cargo delivery to specific sites (Ayloo et al. 2017; Duan
et al. 2015; Kapitein et al. 2010a,b; van Bergeijk et al. 2015). In these assays, chemically induced
or light-induced heterodimerization can trigger the recruitment of specific motors to immotile
cargoes, such as peroxisomes, which from then on report the activity of the motor. These exper-
iments revealed that dynein can selectively enter dendrites through bidirectional runs without
accumulating at the tips, consistent with the mixed microtubule array (Kapitein et al. 2010a). Plus
end—directed Kinesin-3 also entered dendrites but strongly accumulated in the tips of dendrites
(Lipka et al. 2016). In contrast, Kinesin-1 selectively entered axons and completely failed to enter
dendrites (Kapitein et al. 2010a).

How can two plus end—directed kinesins have such different behaviors? To address this ques-
tion, recent work has introduced a novel technique for optical nanoscopy, termed motor-PAINT,
in which motor proteins running over an extracted cytoskeleton are traced with nanometric preci-
sion to super-resolve microtubules and to determine their polarity (Figure 2d) (Tas etal. 2017).In
rat hippocampal neurons, this approach was combined with drug treatments and the nanoscopic
imaging of tubulin modifications to explore the relation between microtubule orientations and
modifications. This approach revealed that, in dendrites, different microtubule subsets are pre-
ferred by either Kinesin-1 or Kinesin-3 and are oppositely oriented (Figure 3¢). While the dy-
namic, tyrosinated microtubules preferred by Kinesin-3 are mostly oriented plus end out, the
stable microtubules preferred by Kinesin-1 have the opposite orientation preference (i.e., 66% of
such microtubules are minus end out). These results suggest that Kinesin-3 and Kinesin-1 drive
anterograde and retrograde dendritic transport, respectively, and explain why Kinesin-1 cannot
drive transport into dendrites. In addition, different microtubule subsets form polarized bundles,
i.e., bundles in which most microtubules have the same orientation, which may promote unidi-
rectional motility of cargoes driven by motors that do not discriminate between different subsets
(Tas et al. 2017).

As described in Section 2.2, the mechanisms by which motors interact with different subsets
are poorly understood. Likewise, how cargoes with multiple motors navigate this network is also
unclear. A recent study revealed that Septin-9 is a MAP that can promote microtubule binding of
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Kinesin-3 while opposing Kinesin-1 (Karasmanis et al. 2018). Strikingly, knockdown of Septin-9
resulted in Kinesin-1-driven transport into dendrites. Thus, in normal conditions, Septin-9 may
prevent Kinesin-1 interaction with tyrosinated microtubules or may contribute to the proper or-
ganization and orientation of different microtubule subsets. More work is needed to resolve the
exact three-dimensional organization of the neuronal cytoskeleton and to map the distribution of
different MAPs.

3.7. Spindle Apparatus: Selective Transport to the Midzone
or Toward One of the Poles

In eukaryotes, a microtubule-based structure termed the spindle apparatus is formed prior to cell
division to ensure the proper segregation of genetic material and organelles. The typical bipolar
spindle can be viewed as two spatially separated astral arrays whose microtubules form antiparallel
overlaps in the region between the asters (Figure 3d). To ensure proper segregation, microtubules
mediate the congression of chromosomes to the spindle midzone. In addition, microtubules from
either pole form parallel bundles that connect to the sister kinetochores of each chromosome in
a process termed biorientation. Once every chromosome is bioriented, the sister chromatids are
separated to the opposite poles during anaphase.

By the onset of congression, the majority of chromosomes are already bioriented, and their
movement is thought to be driven by forces of kinetochore-attached dynamic microtubules
(Auckland & McAinsh 2015). In addition, a smaller percentage (10-20%) of chromosomes that
are located more peripherally and not yet bioriented are transported by kinetochore-attached mo-
tors to the metaphase plate (Barisic et al. 2014, Kapoor et al. 2006). This motor-based congression
involves dynein-dependent movement toward the closest spindle pole, followed by transport to
the metaphase plate by the centromeric kinesin CENP-E (Barisic et al. 2014, Kapoor et al. 2006,
Wood et al. 1997, Yang et al. 2007). But how do two oppositely oriented motors coordinate their
motility to ensure proper delivery to the metaphase plate, rather than moving chromosomes away
from this position?

Recent work has shown that the switch between the dominance of dynein and CENP-E move-
ment depends on the differential preference of dynein and CENP-E for different microtubule
subtypes (Figure 3d) (Barisic et al. 2015). Astral microtubules are mostly tyrosinated, whereas
interpolar microtubules are more detyrosinated. In addition, while initiation of dynein-mediated
transport is enhanced on tyrosinated microtubules (McKenney et al. 2016), in vitro experiments
revealed that CENP-E processivity and force generation were enhanced on detyrosinated micro-
tubules. This setup may explain why dynein is dominant on astral microtubules and why CENP-E
takes over once the detyrosinated microtubules are within reach. Consistently, disruption of the
detyrosination pattern within the spindle by overexpression of tubulin tyrosine ligase resulted in
impaired congression (Barisic et al. 2015).

Microtubule detyrosination also contributes to spindle asymmetry during meiosis. In female
meiosis, only chromosomes that segregate to the egg are transmitted to offspring, while the
remaining chromosomes are degraded in the polar body that is formed after cytokinesis (Akera
et al. 2017). While one would expect that the two parental copies of a gene have an equal
probability to end up in the egg, selfish genetic elements have an increased probability to survive.
Such biased segregation can be associated with increased centromere size and larger kinetochores,
but how these properties ensure biased segregation is unclear. Recent work reported that micro-
tubule detyrosination is increased at the egg side of the spindle, i.e., the surviving side, and that
chromosomes with larger kinetochores sense this modification to promote proper positioning
(Akera et al. 2017). This mechanism may depend on motor-based transport or on the preferential
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destabilization of detyrosinated microtubules by the centromere-associated Kinesin-13 MCAK
(Lampson & Black 2017).

Asymmetric spindle architecture is also necessary for asymmetric stem cell division because it
enables the unequal distribution of fate determinants to daughter cells (Coumailleau et al. 2009,
Kressmann et al. 2015). One mechanism to achieve such unequal distribution is asymmetric po-
sitioning of the spindle within the cell (Li 2013). Alternatively, organelles could be actively redis-
tributed to one side of the spindle, as demonstrated for Notch signaling components enclosed in
Sara endosomes in Drosophila epithelial stem cells (Coumailleau et al. 2009). In this system, the bi-
ased dispatching of Sara endosomes to plla cells is achieved through an asymmetry in microtubule
orientations in the spindle midzone (Figure 3e) (Derivery etal. 2015). Here, a small asymmetry in
the distribution of the minus end stabilizer Patronin causes an increase in microtubule density on
the plIIb side that results in more plus ends pointing toward the plla side in the spindle midzone.
This small asymmetry in microtubule orientations biases the transport of Sara endosomes driven
by the Kinesin-3 KIp98A, resulting in a strong accumulation at the pIla side. Graded disruption of
the microtubule array by mislocalization of Patronin causes a corresponding change in endosome
enrichment that nicely follows the predictions from a mathematical model of the system (Derivery
etal. 2015).

3.8. Intraflagellar Transport: Selective Use of Microtubules

Cilia are microtubule-based structures that protrude from the surface of resting cells and are cru-
cial for signaling, sensing, and motility in many organisms (Anvarian et al. 2019, Khan & Scholey
2018, Mitchison & Valente 2017). The coordinated movement of ciliary components along mi-
crotubules to and from the assembly site at the tip is essential for its morphogenesis (Prevo et al.
2017). Structurally, the cilium is composed of a crosslinked array of microtubules, termed the ax-
oneme, that provides mechanical support, generates motility of motile cilia, and provides tracks
for IFT. Axonemes of most motile cilia form a ring of nine microtubule doublets surrounding a
central pair of single microtubules, known as the 9 + 2 arrangement, while nonmotile cilia lack the
central pair. Each doublet is made of a full A-microtubule with 13 protofilaments and an incom-
plete B-microtubule of 10 protofilaments whose sides are bound to the A-microtubule. Recent
work has revealed a regulatory role of the C-terminal tail of A-microtubules in the nucleation
of a B-microtubule (Schmidt-Cernohorska et al. 2019). All these microtubules are uniformly ori-
ented with their plus end pointing toward the axoneme tip, and therefore transport to and from
the tips is established by plus end-directed kinesins (i.e., Kinesin-2 family members) and minus
end—directed cytoplasmic dynein 2, respectively. Nonetheless, recent work has revealed several
surprising features of this transport system.

Live-imaging of IFT in the single-cell ciliate Chlamydomonas reinbardtii revealed that most par-
ticles move very directionally, with few pauses or reversals that one might expect to result from
collisions between oppositely directed particles or from the potential antagonism between oppo-
sitely directed motors on the same IFT particles (also known as IFT trains) (Stepanek & Pigino
2016). Correlative light electron microscopy demonstrated that anterogradely moving IFT trains
utilize B-microtubules while retrograde IFT uses A-microtubules (Figure 3f) (Stepanek & Pigino
2016). In other words, the microtubule AB doublet structure is used as a double-track highway
for IFT, preventing collisions of cargoes moving in opposite directions. In addition, cryo-electron
tomography of cilia revealed that dyneins are loaded with an inhibitory conformation onto the
anterograde trains and thus do not engage in a tug-of-war with the Kinesin-2 during anterograde
transport (Jordan et al. 2018). At the tip of the cilium, anterograde IFT trains are disassembled
and reassembled into a structurally different retrograde IFT train that engages active dynein for
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processive retrograde transport. Thus, in this system, unimpeded unidirectional transport is en-
sured both by the use of distinct microtubule subsets for transport in opposite directions and by
the controlled regulation of motor activity within particles. In C. elegans, IFT features spatially
different anterograde motors, whose activity is spatially regulated. This regulation is related to a
transition from doublet microtubules to singlet microtubules in distal cilia, where the Kinesin-2
OSM-3 takes over from Kinesin-II (Prevo et al. 2015, Silva et al. 2017, Snow et al. 2004).

How do motors recognize differences in microtubules within a doublet? Structural analysis
has shown that the lattice arrangement of A- and B-microtubules is similar and cannot directly
explain this differential transport (Maheshwari et al. 2015). Interestingly, earlier work revealed
that detyrosination of tubulin is largely confined to the B-microtubule of Chlamydomonas doublets
(Johnson 1998). This finding is consistent with in vitro experiments that found that detyrosination
reduces dynein interactions but promotes Kinesin-2 motility (McKenney et al. 2016, Sirajuddin
et al. 2014). In addition, B-microtubules are more glutamylated (Kubo et al. 2010, Suryavanshi
et al. 2010), which is also beneficial for Kinesin-II motility (Sirajuddin et al. 2014).

While in Chlamydomonas IFT trains were found on all nine doublets, earlier structural studies
using electron micrography in another flagellated protozoan, Tiypanosoma brucei, had suggested
that IFT trains may prefer only subsets of microtubule doublets (Absalon et al. 2008). Consistent
with this idea, a recent study that employed structured illumination microscopy demonstrated
that IFT trains bidirectionally move on only two sets of microtubule doublets (Bertiaux et al.
2018). Both the mechanisms that restrict transport to these two doublets and the function of this
selectivity are still unclear.

4. PERSPECTIVE

Early work using electron microscopy revealed a rich diversity in microtubule-based structures in
different organisms and cell types (Chaaban & Brouhard 2017). In addition, observations of dif-
ferent microtubule subsets that differ in structure, stability, and PTMs date back several decades.
Nonetheless, how these different structures and microtubule subsets contribute to fulfilling spe-
cific transport demands has remained unclear.

As discussed in this review, novel approaches have recently begun to reveal how microtubule
organization guides transport in different systems. New microscopy techniques, such as super-
resolution microscopy and correlative electron and light microscopy, are providing new insights
into microtubule organization, while controlled intracellular transport assays are revealing how
different motor proteins navigate the cytoskeleton. In addition, modeling approaches can predict
transport outcomes of different microtubule geometries and have revealed how small asymmetries
in mixed microtubule arrays can result in robust asymmetric targeting of organelles, for example,
in neuronal dendrites, in Drosophila oocytes, and in mitosis. Thus, while published cartoons of
cytoskeletal organization often show idealized networks (see also Figure 3), moderate disorder
in microtubule organization does not affect polarized transport as long as there is bias. The sys-
tems described here display a spectrum of overall microtubule polarization, featuring strongly
polarized arrays in axons or columnar epithelia; weakly polarized arrays in Drosophila oocytes and
cells displaying PCP; or no overall polarization, such as in dendritic networks where opposite mi-
crotubules have different modifications and recruit different motor proteins to enable polarized
transport.

Although our understanding of noncentrosomal microtubule organization is rapidly growing,
the mechanisms by which specialized microtubule arrays are built are unknown. Feedback
between motor-based transport and microtubule organization is well established in spindle
formation, in which microtubules are often the cargoes of different microtubule-based motors
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(Prosser & Pelletier 2017). More subtle feedback exists in muscle syncytium, where nuclei
nucleate microtubules and are positioned by microtubule-based motors (Roman & Gomes
2018). Similar mechanisms may operate in other differentiated cell types. In addition, the strong
selectivity of different motors for specific microtubule subsets remains poorly understood. Finally,
it remains largely unresolved how the activity of different cargo-bound motors is coordinated
to ensure that the correct transport pathway is activated. The recent discoveries of new tubulin-
modifying or motor-modulating MAPs are providing exciting opportunities to address these
questions. By combining the controlled perturbation of these factors in different cellular systems
with high-resolution microscopy, intracellular transport assays, and modeling, a more integrated
understanding of cellular logistics is likely to emerge.
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